DOI: 10.22428/ MRVSA

Mirror of Research in Veterinary Sciences and Animals

This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial. they don't have to license their derivative works on the same terms.

Mirror of Research in Veterinary Sciences And Animals

Aims and scope

Mirror of research in veterinary sciences and animals (MRVSA) is consecrated to the dissemination and advancement of scientific research concerning veterinary sciences and veterinary medical education. It encloses all the scientific and technological aspects of veterinary sciences in general, anatomy, physiology, biochemistry, pharmacology, microbiology, pathology, public health, parasitology, infectious diseases, clinical sciences, alternative veterinary medicine, laboratory diagnosis, laboratory animals and other biomedical fields.

Types of contributions

- 1. Original research papers (regular papers)
- 2. Short communications
- 3. Review articles
 - Publications within a short period after acceptance

On-line publication in advance of the printed journal.

Papers abstract/indexed by all the major scientific indexing services.

- Off prints will be sent to the corresponding author.
- Abstract of all master, doctoral thesis will be submitted for inclusion in MRVSA for free.
- Thesis, an online database used by researchers around the world. Thesis can be searched by author name, subject terms, and all words in the title and abstract.

Publication frequency

The Mirror of Research in Veterinary Sciences and Animals (MRVSA) publishes three issues per year (**"triannual," issue" three times in one year**). Individual articles are published as soon as they are ready for publication by adding them to the table of contents of the 'current' volume and issue. In this way, the Journal of Mirror of Research in Veterinary Sciences and Animals (MRVSA) aims to speed up the process of manuscript publication from submission to becoming available on the website. Special issues may be added on an ad hoc basis to the journal throughout a particular year and will form part of consecutive issues thereafter.

Authors will be able to check the progress of their manuscript via the submission system at any time by logging into the journal website's personalised section.

Publisher Details

Mirror of research in veterinary sciences and animals (MRVSA) is publish by the "MRVSA Publishing House"/ Nottingham /UK.

Indexing, Archiving and Impact factor and index of journal

- 1. A CrossRef DOI® / The International DOI Foundation (Digital Object Identifier) (Journal DOI: 10.22428).
- 2. Clockss & Lockss / for Metadata
- 3. Digital Open access journal (DOAJ) 2017

DOAJ DIRECTORY OF OPEN ACCESS JOURNALS			SUPPORT DOAJ
Home Search Browse Subjects Apply	/ News About For Publishers API	2520324X	Publisher Area Logout
Your Journals Reapplications Uploar	d Article XML Enter Article Metadata Help		
+ In DOAJ?	1 – 1 of 1		
+ Journal License	Mirror of Research in Veterinary Sciences and Animals		
+ Classification	In DOA/3? Yes ISSN(ø): 2520-324X Date added to DOAJ: 2017-10-25		
	Home page: http://mvat.com/ License: (©)straction Publisher: Minro of Research in Veterinary Sciences and Animals (MRVSA) Platform, Hox Aggregator: OJS Classification: Animal culture, Veterinary modulen Keywords: bactini, diseases: wordeniary, isofalion. Infecte, infection Sarted publishing Open Access content in: 2012 Country Iraq Language: EN		
	1 – 1 of 1		

4. ICI Journals Master List 2013, 2014, 2015, 2016. https://journals.indexcopernicus.com/search/form

Mirror of Research in Veterinary ISSN: 2307-8073, 2520-324X GICID: <u>n/d</u> Country / Language: SE / <u>n/d</u> Publisher: MRVSA publisher house	Sciences and Animals (/search/details?id=31355)
ICV 2016:	90.95
ICV 2015:	80.50
Main page (http://iml indexcopernic https://journals.indexcopernicus.com/search/form	is com)

- 5. Scopus / MRVSA is under consideration / 4ABE05509FE849A6.
- 6. Thomson Reuter (ISI) / MRVSA is under consideration
- 7. Google scholar https://scholar.google.se/citations?user=MNhZb3YAAAAJ&hl=en&authuser=1
- 8. The MRVSA Site and its metadata are licensed under CC.BY.NC

9. Other Indexes: AGRO, Biological Abstracts, Google Scholar, ICI Journals Master List, ISI Web of Science (WoS), ZBD

ii

- 10. Global Online Research in Agriculture (AGRO) Cornell University Albert R. Mann Library/ Food and agriculture organization of the United Nation. <u>http://agora-journals.fao.org/content/en/browse_journal_titles.php?j_init=M&all=true&n=25</u> &p=8
- 11. Journal Barcode

12. Electronic Journal Library/ University Library of Regensburg

E-Z3 E-transfer Total and the set	Electronic Journals Library		
	Journal	search Advanced Search	0
	1 hits Refine search	earch in Veterinary Sciences and Animals	
lauraala	Online Availability: Fulltex	t freely available	
Journal Search	•00 To the fulltext	ts: Vol. 1 , Iss. 1 (2012)	
List by Subject			
List by Title	General information on th	e online edition:	
List of new EZB journals	Title:	Mirror of Research in Veterinary Sciences and Animals	
Institution	r i i i i i i i i i i i i i i i i i i i		
Contact Person	Subject(s):	Medicine	
Suggest a Journal	Keyword(s):	Tiermedizin	
Choose Institution	E-ISSN(s):	2307-8073	
Information & Service	P-ISSN(s):	2307-8073	
About the EZB	ZDB-Number:	2874780-X	
EZB Help	Fulltext online since:	Jg. 1, H. 1 (2012)	
Pay per View Offers	Homepage(s):	http://www.mrvsa.com/	
	Type of appearance:	Fulltext, online only	
	Pricetype:	free of charge	
	ę.		

iii

This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial. they don't have to license their derivative works on the same terms.

DOI: 10.22428/ MRVSA

Mirror of Research in Veterinary Sciences and Animals

Editorial board of Mirror of Research in Veterinary **Sciences and Animals**

Founder & Editor-in-Chief

Karima Al-Salihi BVM&S, MSc. PhD The Nottingham University/ School of Veterinary Medicine and Sciences / UK

Executive Managing Editor

M. Al-Hashamy BSC/ Web Design and Development/ University of Abertay Dundee/ Scotland /UK MSC/ Web Design and user Experiences/ Kingston University/ UK

Associate Editors

Associate professor Siti Suri Arshad

DVM, MSc, PhD Lecturer in veterinary virology, Deputy Dean (Academic &Student Affairs, Faculty of veterinary medicine, University Putra Malaysia, Malaysia.

Professor Dr. Fatih HATIPOGLU

University of Selcuk, Faculty of Veterinary Medicine, Department of Pathology, Konya /Turkey +90.332.2233612, +90.332.2410063 fhatip@selcuk.edu.tr/ http://www.selcuk.edu.tr/veteriner/klinik oncesi bilimler/akademik personel/bil gi/2563/en

Professor Dr. Muthafar Al-Haddawi

BVM&S, MSc. PhD, Doctorate in Veterinary Science, Diplomate American College of Veterinary Pathology (Canada) / The Institute of Molecular and Cell Biology (IMCB)/ Singapore/ Senior Veterinary Pathologist

Associate Professor. T.P.Kannan

School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia. E-mail: tpkannan@kb.usm.my

Assistant Professor Dr. Latif Ibrahim Kadhim

PhD 2010, Faculty of Veterinary Medicine, University Putra Malaysia, Malaysia. E-mail: latifikadhim@yahoo.com, latibr63@gmail.com **Advisory Board**

Assistant Professor Layla Subhy AL-Bassam

PhD In Veterinary Medicine. Faculty of Veterinary Medicine in Dhiala University- Iraq.

Assistant Professor Isaac Karimi

School of Veterinary Medicine

0 3 Attribution-Noncommercial CC BY-NC This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial. they don't have to license their derivative works on the same terms.

iv

Email: karimiisaac@razi.ac.ir;isaac_karimi2000@yahoo.com

Professor. Dr. Alaa A. Sawad

College of veterinary Medicine/ University of Basrah/Iraq

Professor Nidhal Abdul-Mohymen Mohammad

Academic qualification: B.Sc.(1974) M. Sc,(1979) Ph. D. (1992) Specialization:Clinical Immunology./ Proferssor in microbiology department / Faculty of medicine / Al-Nahrain University / Iraq. Member of the national committee of AIDS

Professor El-Sheikh Abdel-Khalek Ramadan El-Sheikh

BVSc.,MSC, Phd : Animal Medicine Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig, Egypt/ Professor of internal veterinary medicine.

Associate Professor. Dr. Ali Mahmoud Al-Kassar

Veterinary nutritionist / Asst. Prof. Department of Public Health / College of Veterinary Medicine Kufa University/Iraq

Associate Professor Dr. Sunanda Sharma

B.V.Sc & A.H., M.V.Sc., Ph.D. (Animal Reproduction, Veterinary Obstetrics & gynaecology), College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner-334001, India. E-mail: <u>dr.sunanda_sharma@rediffmail.com</u>

Professor Dr. Borhan AL-MUFTI

Dept. of Surgery, College of Vet. Medicine/The University of Duhok E-mail: <u>burhani@hotmail.com</u>

Assistant Professor Abdulwahab M. M. Kammon

BVSc.,MSC, Phd / Poultry Diseases / Faculty of Veterinary Medicine, Tripoli University, Tripoli, Libya/Deputy Director The National Centre of Animal Health (NCAH). E. mail address: abd_kammon@vetmed.edu.ly, abd_kammon@yahoo.com

Assistant Professor. Dr. Ali Hussein Hassan

PhD Veterinary Pathology / Faculty of Veterinary Medicine / University of Sulaimani, Al Sulaimaniyah, Kurdistan Region, Iraq

Professor Ghalib S. Ridha (PhD)

Faculty of Veterinary Science, University of Liverpool 1990 Liverpool, United Kingdom / Masters of Veterinary Science (MVSc) 1982 Ontario / Canada. dr.gsa56@gmail.com

Assistant Professor Dr. Hayder Badri Abboud

BVM.& S., University of Baghdad, Baghdad IRAQ.

M.S.V.M.S., University of Missouri-Columbia, Missouri U.S.A. Ph.D., University of Minnesota ,St.Paul-Minneapolis, U.S.A. University of Kerbala, IRAQ. 009647702616186, dr.hbabboud@googlemail.com,

Assistant professor Dr. Hayder Mohammad Al-Ramahi

Kufa University / Head of department of internal medicine/ Iraq.

Instructions for Authors

Preparation of manuscript

Manuscript should be prepared in English language. It must be clear and concise. All the manuscripts must comply with the journal instructions. Failure to do so will result in return of manuscript and delay in publication process. We ensure speedy review and publication process, therefore, authors cooperation is highly encouraged in this regards. Manuscript should be preferably prepared in Word 2010. 2013 and should be sent through email 2003. address (mrvsa59@gmail.com). For speedy review and publication process, submission should be double spaced. All margins should be at least 2.5cm. All pages should be numbered consecutively on the lower right corner. Manuscript must be prepared in Time Roman style.

Plagiarism Screening

MRVSA has a policy of screening for plagiarism. The journal use the Grammarly application to screen for plagiarism. <u>https://app.grammarly.com/</u>

Title

The title of the paper should be complete, comprehensive and should denote the essence of work.

Names of authors and their affiliations

Each author should be identified using superscript. The corresponding author name should also carry asterisk for identification.

Abstract

The abstract should not be more 300 words. It should contain the objective, methods use to conduct the research, clear description of results and brief conclusion drawn from the results. References and discussion should not be included in this section.

Keywords

Keywords should describe the studied problem. They should not be more than 6 words.

Introduction

This section should provide information on importance of the problem and clear objective of the study. Every statement must be supported by literary source in journal that have been published to date. It is advised to provide recent references

from impact factor journals. References containing one or two names of the authors should be cited by the names of the authors (e.g. Bille, 1991 or Brown and bille, 1996). Any reference carrying more than 2 authors should be denoted by first author and et al. should be included (Fernandez-Garayzabal et al., 1996). If more than one paper is cited by the same set of authors they should be differentiated by year (1, 2, 3) both in the text and references. Several papers cited should be arranged according to the year in ascending manner.

Materials and Methods

All procedures, analytical methods, experimental design and preliminary materials should be provided with detail in this section. Relevant references should be quoted for a particular analytical methodology. Complete statistical procedures should be produced under separate heading of "statistical analysis".

Results

In this section, results obtained should be recorded in text form and table data should not be repeated. All results should be clear and concise. The results from the experiment including their statistical detail should be presented graphically or in table form.

Discussion and Conclusion

Discussion should be very solid and concrete. Detailed discussion must be produced in this section with relevant references preferably most recent citation should be included. A short conclusion of the study may be presented in section, which may stands alone or form a subsection of discussion.

References

List of references should be arranged alphabetically in the following style. Reference to a journal publication. Michaelis J, Kaletsch U, Burkart W and Grosche B. (1997) Infant leukemia after the Chernobyl Accident Nature 387, 246. Prasse KW, Heider LE, Maccabe AT (2007). Envisioning the Future of Veterinary Medicine: The Imperative for Change in Veterinary Medical Education. J Am Vet Med Assoc.231, 1340-2. Reference to a book: Quinn, P. J. Carter, M. E. Markey, B. and Carter, G. R. 2004. Clinical Veterinary microbiology. 6th ed. Mosby an imp. Wolf, London. Reference to a chapter in an edited book: Bille, J. Doyle, M.P. 1991. Listeria and Erysipelothrix. In A Balows, WJ Hausler Jr, KL Herrmann, HD Isenberg, HJ Shadomy, Manual of clinical microbiology, 5th ed. ASM Press, Washington DC. pp 287-295.

Copy right

On acceptance of the manuscript, the authors will have to sign the copyright licence of the manuscript. As regard the transfer of rights, the corresponding author assumes responsibility of all authors. The submitted manuscripts is published on the understanding that all the authors are aware of the contents and are agree on the submission of the manuscript to this journal. The journal allow the author (s) to hold the copyright without restriction. In addition, the journal allow the author(s) to retain publishing right without restriction.

Submission of the manuscript

vii

The manuscript must be submitted through email address (mrvsa59@gmail.com)

Publication fees

No submission processing fees is required. Published articles of Mirror of research in veterinary Sciences and animals are open access. This effectively removes the barriers for timely distribution of the articles and ensures that they can be read by as many as possible. The publication fees is 125 \$ USA Dollar. Payment can be made by credit card, bank transfer, money order or check. Instruction for payment is sent during publication process and is also available in the manuscript login page as soon as manuscript is accepted. Publication fee is required to cover the cost of publication, and should be paid before copy editing and publication. Please read the instructions carefully in order to submit a new article. This is a sample paper click here to download. Please model your paper on the sample paper provided in the link. Please read the following instruction carefully for speedy publication of your manuscript. The editor reserves the right to return the manuscript if it is not prepared according to the following instructions.

Attribution-Noncommercial CC BY-NC This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial. they don't have to license their derivative works on the same terms.

viii

© 0 S

Article	Page	
1. SARS-CoV-2 , MERS-CoV and SARS-CoV, the Emerging Coronaviruses: An insight into the Pathological features. Karima A. Al-Salihi; Manal Adnan Habib (2020). Email address: <u>kama/akool18@mu.edu.iq</u>	1-25	
2. Prevalence of ticks infestation in dromedary camels (<i>Camelus dromedarius</i>) in area surrounded Sawa lake/ Iraq. Abdul Al-Rahman Heidar Abdul Al-Hussein ; Alaa Hussein Shanan ; Karima A. Al-Salihi. (2020). Email address: <u>kama-akool18@mu.edu.iq</u> .	26-36	

Table of contents issue 9, 3, 2020, 1-48

This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial. they don't have to license their derivative works on the same terms.

SARS-CoV-2, MERS-CoV and SARS-CoV, the Emerging Coronaviruses: An insight into the Pathological features

Karima A. Al-Salihi^{1*} and Manal Adnan Habib²

 ¹ Internal Medicine & zoonotic diseases Department / College of Veterinary Medicine / Al-Muthanna University/ Al-Muthanna Province/ Iraq, ORCID: <u>https://orcid.org/0000-0002-5698-2678</u>
² Pathology Department./ Clinical Immunology & Infectious diseases / Baghdad College of Medicine/ University of Baghdad/ Baghdad/ Iraq,ORCID: <u>https://orcid.org/0000-0002-0046-1259</u>

ARTICLE INFO

Received: 15.07.2020 Revised: 05.08.2020 Accepted: 20.09.2020 Publish online: 01.02.2021

***Corresponding author:** Karima Al Salihi: Email address: kama-akool18@mu.edu.iq.

Abstract

The zoonoses as causes of human infections have been progressively reported. Many of these zoonotic diseases are viruses and cause severe pulmonary infections. The recent outbreak of severe acute respiratory syndrome (SARS) coronavirus-2 in Wuhan/China has now circulated worldwide with an elevation of a death This paper focuses on the rate. pathology of three zoonotic coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 that have been emerged in the last two decades and caused severe lower respiratory

infection and fatal pneumonia worldwide. However, scarce publications on pathological and ultrastructural features have been reported because of hardly accessible biopsy or autopsy due to cultural and religious intentions, additionally to avoid environmental contagion with consequent infection of health- care staff. Pathological findings have a vital role in improving the understanding of diseases, although it is rarely considered as a diagnostic tool for these types of infections. Additionally, histopathological features raise the suspicion of these diseases and help toward prompt control of viral spreading between populations. Similar pathological findings were reported in human infections with SARS-CoV, MERS-CoV and SARS-CoV-2 comprise bilateral diffuse alveolar damage (DAD), pulmonary edema, desquamation of pneumocytes and formation of hyaline membrane, indicative of acute respiratory distress syndrome (ARDS), presence of cellular fibromyxoid exudate accompanied by marked cytopathic effects, multinucleated syncytial cells along with atypical enlarged pneumocytes and interstitial mononuclear inflammatory infiltration dominated by lymphocytes in the affected lungs. However, in particular, the MERS-CoV mainly infects type II pneumocytes, while both SARS-CoV and SARS-CoV-2 also infect type 1 pneumocytes. In conclusion, COVID-19 macroscopic features are found in the chest and depend on the stage of the disease. While, the histopathological features are like those seen in SARS and MERScoronavirus infections. Moreover, the nature of coronaviruses outbreaks, specially COVID-19 in many more countries, a greater awareness of SARS-CoV-2 pandemic infection is essential.

To Cite this article: Karima A. Al-Salihi; Manal Adnan Habib. (2020). SARS-CoV-2, MERS-CoV and SARS-CoV, the Emerging Coronaviruses: An insight into the Pathological features. (2020). MRVSA. 9 (3): 1-23. Doi: http://dx.doi.org/10.22428/mrvsa-2020-0093-01

Keywords: Hyaline membrane, Pathology, SARS-CoV, MERS-CoV, SARS-CoV-2, zoonotic, COVD-2019.

Introduction

The coronaviruses involve a group of zoonotic viruses that cause a grave human disease comprising Severe Acute Respiratory Syndrome (SARS) /2002 and Middle East Respiratory Syndrome (MERS) / 2012 (Biscavart et al., 2020; Zaki et al., 2012; Peiris et al., 2003). In December 2019 a new highly pathogenic coronavirus SARS-CoV-2 has emerged in Wuhan / China, which causes fatal outbreaks in humans termed as coronavirus disease-2019 (COVID-2019) by WHO (https://www.who.int/ dg/speeches/detail/whodirector-general-s-remarks-at-the-media-briefing-on-2019- ncov-on-11-february-2020). COVID-19 is quickly circulated around the globe and pose a worldwide threat to public health (Zhu et al., 2020). Coronaviruses are a single-strand RNA viruses that belong to subfamily Orthocoronavirinae in the family Coronaviridae, order Nidovirales and realm Riboviria (Perlman & Netland, 2009; Weiss & Leibowitz, 2011; Masters & Perlman, 2013; Fehr & Perlman, 2015; Weiss & Navas-Martin, 2005; Lai et al., 2007; Lai & Cavanagh, 1997; Langereis et al., 2010). The coronaviruses of the zoonotic origin are highly pathogenic, crossing the species barrier and causing high morbidity and mortality in human populations (Li et al., 2005; Kupferschmidt, 2013; Cui et al., 2019; who/cds/csr/gar/2003.11; Hijawi et al., 2013; Drosten et al., 2014; El-Kafrawy et al., 2019; https://www.who.int/emergencies/mers-cov/en/ : Zumla et al., 2015; Kim et al., 2017; Oh et al., 2018). Histopathological features and ultrastructural tissue examination have enabled the diagnosis of previous coronaviruses epidemics of SARS-CoV and MERS-CoV. Tse *et al.*, (2004) approved that post-mortem tissues were essential for the isolation of viable SARS-CoV. The autopsy investigation permits tissue to be collected for virological and ultrastructural examination. Besides, as combined with the proper lung morphological features, it is valuable to approve the diagnosis of SARS- CoV, particularly in clinically unapparent or suspicious but unconfirmed cases (Tse et al., 2004). Ng et al., (2016) mentioned that the histopathological investigations provided an important and valuable vision into the histopathologic changes that provide critical insights into the pathogenesis of MERS-CoV in humans. This review article intends to focus on the pathological and ultrastructural findings of three emerging zoonotic coronaviruses diseases SARS-CoV, MERS-CoV, and SARS-CoV-2.

Severe Acute Respiratory Syndrome (SARS-CoV)

SARS is a rapidly fatal viral pulmonary infection caused by a coronavirus (SARS-CoV). The outbreak was first reported in China between 2002 -2004. Later on, the disease was circulated in Europe and North America due to international travelers. The total reported cases were 8096 from 29 countries involving 774 fatalities (9.6%). The virus genetic map indicates the insertion of SARS-CoV into the human population from civets cat or other mammals in the live-animal markets of China (Guan *et al.*, 2003). Later on, SARS coronavirus was recognized genetically from the horseshoe bats population, indicating that bats were the origin of the virus before circulating into the civet cat in the live-animal markets of China (Hu *et al.*, 2017). The virus was so-called super spreaders because of its transmission between humans via respiratory droplets and close interactions with some individuals (Leung *et al.*, 2004), and clinical signs appeared within 2-12 days after infection. The deaths were occurred in elderly and immunosuppression individuals but were limited in youngers and 12 years of age (Chan *et al.*, 2007). The common symptoms

were non-specific, including malaise and myalgia associated with lymphopenia, thrombocytopenia, and elevation in the Lactate dehydrogenase (LDH) and C-Reactive protein (Nicholls et al., 2005). SARS clinical severe cases termed "atypical pneumonia," and the post-mortem examination of the dead patients has been principally used to determine the existing histopathological data for SARS-CoV. According to Nicholls et al., (2003) and Gu et al., (2005), the upper respiratory tract revealed mucopurulent materials and the lungs of the dead patients were edematous, congested, and heavily weighted up to 2100 gm accompanied by irregular patchy areas of consolidation and absence of pathognomic features (Figure. 1). The histological features SARS were nonspecific and depended on the stage of diseases (Ding et al., 2003; Franks et al., 2003), where acute diffuse alveolar damage was usually occurred in the early stage of infection (<11 days), accompanied with a mixture of acute fibrinous, organization pneumonia in the later stages of the disease (Figure. 2). Additionally, intravascular microthrombi, squamous metaplasia, multinuclear giant cell formation with intracytoplasmic viral inclusions also have been described (Figure. 3) (Ding et al., 2003). Affected lungs also showed a mild increase of the alveolar macrophages with hyaline membrane formation accompanied by a slight increase in interstitial lymphocytes. Nicholls et al., (2003) also described the presence of occasional pneumocytes revealing viral cytopathic-like changes, including cytomegaly with nuclear enlargement and prominent nucleoli. Additionally, Tse *et al.*, (2004) mentioned that pneumocytes were the primary target site of infection with various degrees of bronchiolitis obliterans organizing pneumonia (BOOP); the presence of multinucleated pneumocytes and diffuse alveolar damage (DAD). Though these features are non-specific, therefore, their combination occurrence, jointly with positive serological/microbiological investigations and ultrastructural tissue examination, supports SARS diagnosis to be confirmed. Tse et al., (2004) also approved the holding of SARS-CoV by the lung and small intestinal tissue samples supporting the successful isolation of the virus from these tissues. Few viral-like elements enclosing the pneumocytes were observed in the ultrastructural investigation (Figure. 4A) (Tse et al., The viral particles about 60-90 nm in size were accumulated within dilated 2004). cytoplasmic vesicles and reminiscent of endoplasmic reticulum, which showed a clubshaped projection that gave appearance similar to that observed in Vero cell culture (Figure. 4 B, C). Additionally, some well-preserved viral particles revealed a ring closely underneath the envelope; the coronaviruses appeared as typical helical nucleocapsid with typical electron lucent-center in cross-section of these particles. However, neither macrophages nor other cell types in the lung were revealed viral-like particles (Tse *et al.*, 2004).

DOI: 10.22428/ MRVSA *Mirror of Research in Veterinary Sciences and Animals*

Figure.1: Shows the gross and histopathological features of lungs from patients with severe acute respiratory syndrome (A)Lungs with extensive consolidation accompanied with a greyish cut surface that appeared in the majorities of the patients. (B) Diffuse alveolar damage (airspaces are indicated by asterisks) the features of acute phase accompanied with hyaline membrane formation (arrows) and edema were seen in all patients (haematoxylin and eosin stain; original magnification, 6100). (C) Dilatation of airspace accompanied with interstitial thickening and mild infiltration of inflammatory cells (the asterisk indicates the dilated airspace). Hyaline membrane was evident in small amount as indicated by the arrow (haematoxylin and eosin stain; original magnification, 6100); (D) lungs of patients with marked interstitial fibrosis and honeycombing (asterisks indicated the abnormally dilated airspaces; Masson's trichrome stain; original magnification, 640). (source: Tse *et al.*, 2004).

Figure. 2: Shows various pulmonary pathological changes including: Bronchiolitis obliterans organizing pneumonia (BOOP)-like lesion in patients with severe acute respiratory syndrome. (A) A BOOP-like lesion was evident with cellular organizing plugs within the small airways and airspaces (asterisks indicate some of the lesions). Lesions were typically located in the subpleural region (the visceral pleural surface is designated by arrows; haematoxylin and eosin stain; original magnification, 640). (B) Higher power view of cellular organizing plugs (asterisk). The main cellular component consisted of histiocytes, which were CD68 positive (data not shown) (haematoxylin and eosin stain; original magnification, 6200). (source: Tse *et al.*, (2004).

Figure. 3: Lung sections from patients with Atypical pneumocytes with severe acute respiratory syndrome. (A) The multi-nucleated giant pneumocytes with various nuclei distribution (indicated by arrows; haematoxylin and eosin stain; original magnification, 6400). (B) A giant atypical pneumocyte with prominent eosinophilic nucleoli (indicated by arrow; haematoxylin and eosin stain; original magnification, 6400). (source: Tse *et al.*, (2004).

Figure 4. Shows the ultrastructural features of viral particle containing lung cells. (A) Dilated cytoplasmic vesicles contain viral-like particles ranging from 60 to 90 in sizes. Some of the better preserved structures consistent with viral envelopes are indicated by the arrows. The overall appearance of the virus was different from that of multivesicular bodies, which can be seen in some normal cells. Vero cell culture was used for comparison (B and C). (B) Section of an infected Vero cell showing similar features to those seen in the pneumocytes. The viral particles are found within the endoplasmic reticulum (indicated by the asterisk) and on the surface of the cytoplasmic membrane (indicated by the arrows). (C) Typical morphology of coronavirus particles in the supernatant of a Vero cell culture (indicated by the arrows; negative staining with 2% phosphotungstic acid). (source: Tse *et al.*, (2004).

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

MERS-CoV is the cause of acute respiratory syndrome associated with a high case fatality rate (804 fatalities & 35.5% case fatality) from 2266 total confirmed cases

(http://www.who.int/emergencies/mers-cov/en/). The first MERS case was reported in 2012 in a patient from King Saudi Arabia, who suffered from respiratory failure and renal failure (Zaki et al., 2012). Unlike the rapid circulation and consequent latency of SARS-CoV, MERS-CoV was continued to spreading and producing sporadic outbreaks within the Arabian Peninsula as well as in countries where the infected patients traveled. MERS is a zoonotic disease, and the dromedary camels were the source of transmission into human populations according to the results of serological and molecular investigations (Azhar *et al.*, 2016). Subsequently, doubt has been raised about the role of camels as an intermediate host or reservoir, and the studies have found a genomic fragments material of MERS-CoV identical to humans in bat populations) (Memish et al., 2013). Human- to the human nosocomial transmission had occurred in the most reported cases, such as the outbreak that occurred in a Korean hospital, when a single patient admitted and led to 186 infections comprised 36 fatal cases (Arabi et al., 2017). Person- to- person spread within the household have been documented as patient respiratory secretions and close nearby bring the high risk of transmission (Arwady et al., 2016). MERS occurs in various clinical presentations from asymptomatic infection about 25% (Oboho et al., 2015), to severe disease in greatest risk groups, including older adults, diabetes, and heart disease patients that are liable for the development of respiratory failure (Arabi et al., 2017). The serological studies reported positive results in 0.15% of patients with a higher probability of positive serology among individuals with a history of camel-exposure, who might act as an asymptomatic source of infection (Müller et al., 205). MERS patients revealed nonspecific clinical symptoms, including myalgias, sore throat, and runny nose, with the incubation period from 2-14 days. Additionally, extrapulmonary manifestations include gastrointestinal distress, and neurological sequelae have been reported in some cases accompanied by respiratory symptoms (Arabi et al., 2017). Rarely, postmortem was done for MERS-CoV cases. Therefore, the available pathological findings are limited for MERS cases (Walker, 2016). The first autopsy performed on a fatal MERS-CoV case in the world (from a hospital outbreak in the United Arab Emirates in April 2014), was done by Ng et al., (2016), who determined the histopathological, immunohistochemical, and ultrastructural finding as well. The important autopsy findings were massive effusion in pleural (about 5 Liter), pericardial (150 ml), and abdominal cavities accompanied by generalized congestion and consolidation of the lungs. Diffuse alveolar damage, alveolar fibrin deposits, hyaline membranes formation, type 2 pneumocyte hyperplasia, edema, and various type of inflammatory cells invading alveolar septa, and rare multinucleated syncytial cells, were the common pulmonary histopathological features. Both alveoli and subpleural showed dispersed foci of necrotic debris. However, no viral inclusions were seen, and few anthracosis was found (Figure 5 A, B, C).

Attribution-Noncommercial CC BY-NC This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial, they don't have to license their derivative works on the same terms.

Figure 5: Histopathology of lung from MERS-CoV patient. A: Pulmonary edema. B: Diffuse alveolar damage, including prominent hyaline membrane formation (arrow). C: Alveolar fibrin deposits, type 2 pneumocyte hyperplasia, and thickened alveolar septa involved by edema and a mixed inflammatory infiltrate. Original magnification: x5 (A); x20 (B-C). (Source: Ng *et al.*, 2016).

The tracheal and bronchi sections were also revealed mild to moderate lymphocytic mucosal and submucosal inflammation with infiltration of neutrophils and plasm with focal necrosis in the bronchial submucosal glands (Figure 6 A, B).

Figure 6: Histopathology of lung from MERS-CoV patient. A: Moderate lymphocytic inflammation of the submucosal glands. B: Magnified from the boxed area in B. Submucosal glands with focal areas of necrosis (arrow). Original magnification: x10 (A); x40 (B) (Ng *et al.*, 2016)

Immunostaining for MERS-CoV antigens was identified in both unremarkable and necrotic bronchial submucosal glands (Ng *et al.*, 2016; Alsaad *et al.*, 2018). Various pathological changes were also seen in the kidney including, thickened Bowman capsules, globally sclerotic glomeruli (5% to 10% of glomeruli) severe atherosclerosis, and hyaline arteriolosclerosis, patchy interstitial inflammation, and intratubular proteinaceous and granular casts. Multiple lymph nodes were revealed a reduction in the lymphoid follicles and a tough interfollicular proliferation of pleomorphic immunoblasts mixed with a

polymorphous population of reactive lymphocytes. Extensive myocyte hypertrophy, moderate coronary atherosclerosis, and sparse fibrosis were seen in the heart sections.

The liver sections showed moderate steatosis, scattered calcifications, and mild portal tract and lobular lymphocytic inflammation. The sections of the cerebrum and cerebellum were unremarkable (Alsaad *et al.*, 2018). Pneumocytes and epithelial syncytial cells were identified as essential targets of MERS-CoV antigen by double staining immunoassays that used anti-MERS-CoV antibodies paired with immunohistochemistry for cytokeratin and surfactant. The colonialization of MERS-CoV was seen scattered in cytoplasm of pneumocytes and syncytial cells by immunostaining with dipeptidyl peptidase 4 (PPD-4). However, no evidence of MERS-CoV antigens was identified in the kidney. Immunohistochemistry for MERS-CoV was also negative in numerous specimens from different organs, including kidney, liver, spleen, several lymph nodes, bone marrow, small intestine, and colon (Figure. 7 A-D) (Alsaad *et al.*, 2018).

Figure.7: A-D: Immunostaining of MERS-CoV antigen in pneumocytes (Ab 1511; D, arrow), a multinucleated syncytial cell (Ab 1511; E, arrow), and a binucleated cell (Ab 1514; F, arrow). Immunostaining of MERS-CoV antigen in necrotic foci of submucosal glands (arrow; Ab 1512). Ab, antibody; MERS-CoV, Middle East respiratory syndrome coronavirus. Original magnification: x20(A); x 75 (B); x100 (C); x63 (D) (Source: Alsaad *et al.*, 2018).

The electron microscopy observations revealed degenerated and infected pneumocytes that covered by hyaline membrane comprised of the fibrine basement membrane (Fig.8 A). Viral particles were found in the membrane-bound vesicles that appeared as individuals or groups, spherical shaped about 50 to 150 nm in diameter (Figure. 8B) (Source: Alsaad et al., 2018).⁴³

Figure 8: A: Fragmented pneumocyte infected with MERS-CoV, hyaline membrane (arrowhead) present. B: Magnified from the boxed area in A. MERS-CoV virions dispersed as single particles (arrow) or in clusters within membrane-bound vesicles (arrowhead). Spherical and pleomorphic particles ranged in size from 50 to 150 nm diameter. Scale bars: 2 mm (A); 500 nm (B). (Source: Alsaad *et al.*, 2018). ⁴³

Alsaad et al., (2018)⁴³ reported the second MERS-CoV case autopsy, a 33-year-old man with primary cutaneous T cell lymphoma on the face, trunk, scalp, and lower and upper limbs, who was under chemotherapy followed by radiation, he developed a fever and productive cough and was treated as healthcare-associated pneumonia. Sputum was MERS-CoV rRT-PCR positive until his death. Severe acute hematological pneumonia and exudative diffuse alveolar damage (DAD) were recognized in the lungs that are heterogeneous in severity. The lung parenchymal architecture was preserved in less affected areas. However, scattered mononuclear inflammatory cells and pigmented pulmonary macrophages were distributed in the interstitium and alveolar spaces accompanied by different amounts of filamentous fibrin deposits. Sloughing of alveolar cells, sporadic multinucleated syncytial cells, congestion of alveolar walls, and hyaline membrane formation were also reported. However, no granuloma was recognized, and acute and chronic inflammatory cells infiltrate seen in the focal peri-bronchiolar site. Additionally, interstitial lung vasculature was infiltrated by focal subendothelial lymphocytes. Electron microscopy revealed the presence of viral inclusions both in respiratory epithelium and proximal renal tubular epithelial cells (Alsaad et al., 2018). Histopathology of renal biopsy from MERS-CoV infection was reported by Cha et al., (2016) from a man 8 weeks after infection. Acute tubular sclerosis, accompanied by proteinaceous cast formation and acute tubulointerstitial nephritis, was obvious. However, no glomerulosclerosis was recognized. Additionally, the viral component was not seen in renal tissue by electron microscopy and in situ hybridization Cha et al., (2016). The pathogenesis of MERS-CoV in human tissue has been studied in ex vivo and animal models (Memish et al., 2013; Zhou et al., 2017). Similar replication kinetics and cellular tropism were found between camel-isolated to human-isolated MERS-CoV strains. All MERS-CoV strains were infected non-ciliated bronchial epithelium and alveolar epithelial cells comprise type II pneumocytes, though no infection was determined in pulmonary macrophages (Chan et al., 2014). Yeung et al., (2016) reported that MERS-CoV produces infection of multiple cell types, including renal tubular cells, vascular endothelial cells, and podocytes. However, experimental infection of the small intestine explant with

MERS-CoV showed limited infection to the enterocytes surface and formation of syncytial cells. Consequently, Corman *et al.*, (2016) found that MERS-CoV patients shed virus in their stool and urine. After the detection of the virus, Li *et al.*, (2017) used a mouse model to adapt MERS-CoV, especially for the DPP-4 receptor. Moreover, understanding the inflammatory pathway and viral localization in the lungs, brain, heart, spleen, and intestine have been supported by these animal models. Another model used to study the pathology of MERS-CoV is a rhesus macaque that showed pulmonary consolidation, edematous lung lesions, and pneumonia, which were identical to the disease phenotypes, as seen in humans. Moreover, histopathological features revealed hyaline membrane formation, acute diffuse alveolar damage, and frequently seen multinucleated giant cells. However, no infectious virus was identified in the blood, upper respiratory tract, and other solid organs, and only was found in the lung (de Wit *et al.*, 2013; Yao *et al.*, 2014).

Severe acute respiratory syndrome- coronavirus 2 (SARS-CoV2/COVID-19)

COVID-19 is the third zoonotic human coronavirus disease of the century, which has caused panic and severe fear among the population around the globe. COVID-19 is considered as an acute resolved disease. Still, it can also be deadly, with a 2 % case fatality rate and massive alveolar damage, besides the progressive respiratory failure occurred in severe disease (Huang et al., 2020). It was first recognized on December 12th, 2019, about 27 human cases of viral pneumonia in Wuhan/ Republic of China, furthermore 7 patients were seriously ill. All those patients were exposed to farm animals, bats, and snakes in Huanan Seafood wholesale Market and suggesting possible zoonosis (Chan et al., 2020 ; Zhou et al., 2017 ;Lu et al., 2020). On January 7, 2020, a new coronavirus (SARA-CoV-2) was isolated from those patients. Earlier, the virus termed as novel coronavirus 2019 (2019-nCoV). Nonetheless, on February 11, 2020, the virus was named officially as COVID-19-SARS-CoV-2 by the WHO. More people have infected by this new virus in comparison to its two ancestors Globally, at January 30 th, 2021 about 102, 636,329 cases have been confirmed, over 2,216, 421 deaths and 74,329, 586 recovered comprise 26,086,647 active cases (25,981,318 (99.6%) in mild condition & 109,004 (0,4%) serious or critical) and 76,549,682 closed cases (74,239,586 (97%) Recovered / Discharged) and 2,216, 421 (3 %) Deaths (https://www.worldometers.info/coronavirus/ 1/30/2021). The polymerase chain reaction was used for confirmation of COVID-19. The infection occurred in a patient with an average age of 55 years. However, cases appear to be sporadic in children (https://www.worldometers.info/coronavirus/).

The phylogenetic investigation and full-genome sequencing revealed that the cause of COVID-19 is a betacoronavirus located in the same subgenus as the severe acute respiratory syndrome virus (SARS-CoV), as well as several bat coronaviruses, but in a dissimilar clade. The bats appear as the primary source of infection. However, the transmission of the COVID-19 virus is still mysterious, whether transmitted directly from bats or through some other mechanism (through an intermediate host) (Perlman, 2020).

A thousand cases with SARS-CoV-2 have already reported in many countries, including European Union, United Kingdom, United States, Middle East, Iran, Africa, New Zealand, and Australia (Yang *et al.*, 2020; Shi *et al.*, 2020; Wang *et al.*, 2020 A). Numerous studies have been published and described the clinical features and distinguishing radiographical

findings, especially chest CT scans (Huang *et al.*, 2020; Wang *et al.*, 2020 B). However, scarce studies have been described the postmortem findings and histopathological and ultrastructural features of tissue samples of patients with SARS-CoV-2 in recent months (Zhu *et al.*, 2020; Zhe *et al.*, 2020; Tian *et al.*, 2020).

Tian *et al.*, (2020) have reported the several reasons for the scarce autopsies and biopsies, of COVID-19 such as the sudden occurrence of the outbreaks, a massive number of hospitalized infected patients, lack of health care workers, rapidly transmission rate of the virus that leads to reduce the importance of different diagnostic test compare to clinical primacy and avoiding environmental contagion with consequent infection of health- care staff.

Hanley et al., (2020) summarized the interpretation and guidelines released from the Royal College of Pathologists on postmortem examination for mortuary workers in suspected COVID-19 cases according to the understanding the risk of these diseases. Routinely, the pathogens are classified based on their risk to humans to reduce the risk towards staff in clinical and research-related microbiology laboratories. Nevertheless, the health of mortuary staff and autopsy practice allow the potential hazard due to risk of spreading infectious pathogens during and after postmortem examination Hanley et al., (2020). The hazard groups are accredited HG1-4 depending on the risk of human infection, the probability spread, and approach to treatment or prophylaxis. The SARS-CoV, MERES-CoV, and recently SARS-CoV-2 are approved as HG3 organisms sharing similar criteria of other viruses that categorized in this group like poliovirus, dengue, rabies virus, hepatitis virus B, C, D, and E, and HIV1 and 2. HG3 organisms may lead to severe human disease and pose a significant risk to workers and able to transmit to other humans; however, prophylaxis and treatment are commonly available. Therefore, the autopsy of COVID-19 cases needs appropriate precautions in place, and a slight risk can occur to mortuary workers dealing with these cases. Besides, experienced mortuary staffs must be able to handle any HG3 pathogen cases including COVID-19 cases.

The most important lung pathological features associated with early-phase COVID-2019 pneumonia in two lung cancer patients were described by Tian et al., (2020). The first patient was a female aged 84 suffering from pulmonary cancer with a medical history of hypertension. Her enhanced chest CT scan revealed an irregular solid nodule in the right middle lobe with bilateral ground-glass opacity. Subsequently, she underwent a thoracoscopic resection of the right middle lobe. Postresection, there was a slight wheezing sound on auscultation and experienced some difficulty in breathing, chest tightness, wheezing, and dry cough, and she diagnosed as viral pneumonia. She transferred to a special isolation ward, and her pharyngeal swab test result was positive for SARS-CoV-2 (2019-nCoV). The patient died, although she was under a comprehensive treatment. The clinical information approved that the patient was exposed to another patient in the same room who was infected with SARS-CoV-2. Although the histopathological features of the resected specimen were compatible with typical adenocarcinoma, alveolar damage involving alveolar edema and proteinaceous exudates was reported (Figure. 9A). Moreover, inspissated spherical secretions of globules were also noticed (Figure. 9B) accompanied by vascular congestion with patchy and mild inflammatory infiltration. The airspaces were revealed focal fibrin clusters combined with mononuclear inflammatory cells and multinucleated giant cells (Figure. 9C), while no significant neutrophil infiltration was found in the tissue. Patchy and severe pneumocyte hyperplasia and

interstitial thickening were noticed, demonstrating an ongoing reparative process. Viral inclusions were also noted (Figure. 9D).

The second case was for a 73 years aged male with a medical history of hypertension for 20 years, who was also suffering from lung cancer in the right lower lobe. The patient underwent to the right lower lobe lung resection. On 9 days postoperative, the patient developed a fever, dry cough, chest tightness, and muscle pain, and his PCR test for SARS-CoV-2 was positive. However, the patient was discharged after 20 days of treatment. According to the pathological examination, the diagnosis was adenocarcinoma. However, the adjacent area of the lung parenchyma revealed proteinaceous and fibrin exudates (Figure. 10A) accompanied by diffuse thickening of alveolar walls (Figure. 10B), involving type II pneumocyte hyperplasia and proliferating interstitial fibroblasts. The airspaces revealed focal fibroblast mass and multinucleated giant cells (Figure. 10C), demonstrating variable grades of the proliferative phase of diffuse alveolar damage. Profuse alveolar macrophages and type II pneumocyte hyperplasia (Figure. 10D).

Figure 9. Shows the Histological changes of case 1 described by Tian *et al.*, (2020). Alveolar spaces with focal proteinaceous exudates; B. Scattered protein globules; C. Granuloma-like nodules consisted of fibrin, inflammatory cells and multinucleated giant cells inside the airspaces; D. Hyperplastic pneumocytes, some with suspected viral inclusions (arrow).

Figure 10. Shows the histological changes of exudative phase and *nonspecific interstitial pneumonia*- like pattern in case 2 described by Tian *et al.*, (2020). ⁶² A. Evident proteinaceous and fibrin exudate; B. Diffuse thickening and fibrosis of the alveolar walls and septa without an inflammatory component; C. Fibroblastic foci in the interstitial space (arrow); D. Abundant polymorphonuclear cells and macrophages infiltrating airspaces. (Source: Tian *et al.*, 2020).

Zhe et al., (2020) also reported the pathological findings of COVID-19 in a 50-year-old man who suffered from fever, chills, cough, fatigue, and shortness of breath. On day 14 of illness, his hypoxemia and shortness of breath were worsened, and the patient had a sudden cardiac arrest and was died despite a comprehensive treatment. Biopsy samples from Lung, liver, and heart tissue were collected. A bilateral diffuse alveolar damage with cellular fibromyxoid exudates was noticed in the lung section (Figure. 11A, B). They were accompanied with desquamation of pneumocytes and hyaline membrane formation in the right lung that demonstrating acute respiratory distress syndrome (ARDS; Figure. 11A). Early stages ARDS were also observed in the left lung tissue comprised of pulmonary edema and hyaline membrane formation (Figure. 11B). Moreover, both lungs revealed interstitial mononuclear inflammatory infiltrates, dominated by lymphocytes. Pathological features were also seen in the intra-alveolar spaces, including multinucleated syncytial cells accompanied by atypical enlarged pneumocytes that characterized by large nuclei, amphophilic granular cytoplasm, obvious nucleoli, and viral cytopathic-like changes. However, no intranuclear or intracytoplasmic viral inclusions were recognized. Zhe et al., (2020) also described histopathological features of the liver, which included slight lobular and portal activity and slight, moderate microvesicular steatosis (Figure. 11C) that demonstrating hepatic injury due to SARS-CoV-2 infection or drug-induced liver injury. Moreover, heart tissue revealed a few interstitial mononuclear inflammatory infiltrates, with the absence of other substantial damage (Figure. 11D).

13 Attribution-Noncommercial CC BY-NC This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial, they don't have to license their derivative works on the same terms.

Figure. 11: Shows the pathological manifestations of SARS-CoV-2 described by Zhe *et al.*, (2020) (A) right lung tissue ; (B) left lung tissue; (C) liver tissue ; (D) heart tissue in a patient with severe pneumonia.

The high rate of renal impairment was also observed in COVID-19 patients, indicating the development of kidney dysfunction, accompanied by severe testis damage that revealed a high expression level of ACE2 (the SARS-CoV-2 receptor) in the testis, kidney and gastrointestinal tract. Severe testis damage also leads to a testicular lesion in males (Li *et al.*, 2020; Fan *et al.*, 2020). The initial description of the SARS-CoV-2 and its specific cytopathic effects and morphology was done by Zhu *et al.*, (2020). The cytopathic effects were seen by a light microscope at 96 hours after inoculation on the surface of human airway epithelial cells accompanied by the absence of cilium beating in the center of the focus (Figure. 12).

Figure. 12: Shows the Cytopathic effects in human airway epithelial cell cultures after inoculation with SARS-CoV-2 described by Zhu *et al.*, (2020)

14
Attribution-Noncommercial
CC BY-NC
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-
commercial, they don't have to license their derivative works on the same terms.

The transmission electron microscope observation using negative SARS-CoV-2 generally revealed pleomorphic spherical particles ranged from 60 to 140 nm in diameter (Figure.13). Viral spikes measure about 9 to 12 nm appeared on the virion particle and gave it the typical solar corona appearance. The in vitro SARS-CoV-2 cultured human airway epithelial ultrathin sections revealed inclusion bodies filled with virus particles in membrane-bound vesicles in the cytoplasm and extracellular free virus particles Zhu *et al.*, (2020).

Figure. 13: Shows features of SARS-CoV-2 with transmission electron microscopy described by Zhu *et al.*, (2020). (A) Negative- stained SARS-CoV-2 particles in the human airway epithelial; (B) Cell ultrathin sections, arrowheads indicate extracellular virus particles, arrows indicate inclusion bodies formed by virus components, and triangles indicate cilia.

Lastly, on histopathology of SARS-CoV-2, diagnosis using histopathological investigation needs to submit infected samples to laboratories. Henwood, (2020) mentioned that there is little known neither on how to collect, handle, or transport and the appropriate disinfectants for SARS-CoV-2 nor the safety of histopathological fixation and processing. Therefore, a standard precaution measures and biosafety practice should follow to minimize the possibility of exposure to the pathogen. Nonetheless, authorities have recommended effective disinfectants for other coronaviruses (e.g., SARS and MERS) to inactivate SARS-CoV-2. Formalin and glutaraldehyde found to inactivate SARS-CoV in the temperature-and time-dependent way (Darnell *et al.*, 2004). Accordingly, Henwood, (2020), the appropriate safety precautions to be taken and formalin fixation and paraffin embedding should inactivate SARS-CoV-2.

Conclusions

In conclusion, three emerging zoonotic coronaviruses outbreaks have occurred during two decades included SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19). COVID-19 is the most recent pandemic that distributed rapidly worldwide, causes fatal acute respiratory disease and develops panic and health crisis between people and risen

extensive social, economic, and health security effects accompanied with severe precautions procedures that apply by majorities of countries to contain this virus transmission. Reports of autopsies or lung tissue samples of patients with SARS-CoV, MERS-CoV, and COVID-19 were limited. Basted on previous published studies, acute respiratory distress syndrome, was appeared on SARS-CoV, MERS-CoV, and COVID-19 patients who showed similar macro and micropathological features. These virus appeared to infect unciliated bronchial epithelial cells and type II pneumocytes. Severe illness of the respiratory tract were occurred due to infection with these viruses accompanied with diffuse alveolar damage, hyaline membrane formation and inflammation of the alveolar walls with desquamation of pneumocytes. Complicated cases with a secondary bacterial pneumonia revealed infiltration of inflammatory cells specially neutrophils in the intra-alveolar area. Moreover, COVID-19 can cause kidney and testis damage.

References

1. Alsaad KO, Hajeer AH, Al Balwi M, Al Moaiqel M, Al Oudah N, Al Ajlan A, AlJohani S, Alsolamy S, Gmati GE, Balkhy H, Al-Jahdali HH, Baharoon SA, Arabi YM.(2018). Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study. Histopathology. 2018 Feb;72(3):516-524. doi: 10.1111/his.13379. Epub 2017 Nov 21. PMID: 28858401; PMCID: PMC7165512.

2. Arabi YM, Balkhy HH, Hayden FG, Bouchama A, Luke T, Baillie JK, Al-Omari A, Hajeer AH, Senga M, Denison MR, Nguyen-Van-Tam JS, Shindo N, Bermingham A, Chappell JD, Van Kerkhove MD, Fowler RA. (2017). Middle East Respiratory Syndrome. N Engl J Med. 2017 Feb 9;376(6):584-594. doi: 10.1056/NEJMsr1408795. PMID: 28177862; PMCID: PMC5362064.

3. Arwady MA, Alraddadi B, Basler C, Azhar EI, Abuelzein E, Sindy AI, Sadiq BM, Althaqafi AO, Shabouni O, Banjar A, Haynes LM, Gerber SI, Feikin DR, Madani TA. (2016). Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014. *Emerg Infect Dis*, 22, (8),1395–1402. https://doi.org/10.3201/eid2208.152015.

4. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, Madani TA. (2014). Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 2014 Jun 26;370(26):2499-505. doi: 10.1056/NEJMoa1401505. Epub 2014 Jun 4. PMID: 24896817.

5. Biscayart C, Angeleri P, Lloveras S, Chaves TDSS, Schlagenhauf P, Rodríguez-Morales AJ.(2020). The next big threat to global health? 2019 novel coronavirus (2019nCoV): What advice can we give to travellers? - Interim recommendations January 2020, from the Latin-American society for Travel Medicine (SLAMVI). Travel Med Infect Dis. 2020 Jan-Feb;33:101567. doi: 10.1016/j.tmaid.2020.101567. Epub 2020 Jan 30. PMID: 32006657; PMCID: PMC7128745.

Attribution-Noncommercial
CC BY-NC
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-
commercial, they don't have to license their derivative works on the same terms.

6. Chan JC, Tsui EL, Wong VC. (2007). Hospital Authority SARS Collaborative Group. Prognostication in severe acute respiratory syndrome: a retrospective time-course analysis of 1312 laboratory-confirmed patients in Hong Kong. Respirology. 2007 Jul;12(4):531-42. doi: 10.1111/j.1440-1843.2007.01102.x. PMID: 17587420; PMCID: PMC7192325.

7. Cha RH, Yang SH, Moon KC, Joh JS, Lee JY, Shin HS, Kim DK, Kim YS. (2016). A Case Report of a Middle East Respiratory Syndrome Survivor with Kidney Biopsy Results. J Korean Med Sci. 2016 Apr;31(4):635-40. doi: 10.3346/jkms.2016.31.4.635. Epub 2016 Mar 10. PMID: 27051251; PMCID: PMC4810350.

8. Chan RW, Hemida MG, Kayali G, Chu DK, Poon LL, Alnaeem A, Ali MA, Tao KP, Ng HY, Chan MC, Guan Y, Nicholls JM, Peiris JS. (2014). Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study. Lancet Respir Med. 2014 Oct;2(10):813-22. doi: 10.1016/S2213-2600(14)70158-4. Epub 2014 Aug 28. PMID: 25174549; PMCID: PMC7164818.

9. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY.(2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020 Jan 28;9(1):221-236. doi: 10.1080/22221751.2020.1719902. Erratum in: Emerg Microbes Infect. 2020 Dec;9(1):540. PMID: 31987001; PMCID: PMC7067204.

10. Cui J, Li F, Shi ZL. (2019). Origin and evolution of pathogenic coronaviruses. *Nat Rev Microbiol*, 17, 181–92.

11. Corman VM, Albarrak AM, Omrani AS, Albarrak MM, Farah ME, Almasri M, Muth D, Sieberg A, Meyer B, Assiri AM, Binger T, Steinhagen K, Lattwein E, Al-Tawfiq J, Müller MA, Drosten C, Memish ZA. (2016). Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection. Clin Infect Dis. 2016 Feb 15;62(4):477-483. doi: 10.1093/cid/civ951. Epub 2015 Nov 12. PMID: 26565003; PMCID: PMC7108065.

12.de Wit E, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F, Brining D L, Fischer E R, Martellaro C, Okumura A, Chang J, Scott D, Benecke A G, Katze MG, Feldmann H, Munster VJ. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. *Proc Natl Acad Sci*, 110(41):16598–16603. https://doi.org/10. 1073/pnas.1310744110.

13.**Darnell ME, Subbarao K, Feinstone SM, Taylor DR (2004).** Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods. 2004 Oct;121(1):85-91. doi: 10.1016/j.jviromet.2004.06.006. PMID: 15350737; PMCID: PMC7112912.

14. Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, Cai J, Li X, Kang W, Weng D, Lu Y, Wu D, He L, Yao K. (2003). The clinical pathology of severe acute respiratory

syndrome (SARS): a report from China. J Pathol. 2003 Jul;200(3):282-9. doi: 10.1002/path.1440. PMID: 12845623; PMCID: PMC7168017.

15. **Drosten C, Kellam P, Memish ZA.(2014).** Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 2014 Oct 2;371(14):1359-60. doi: 10.1056/NEJMc1409847. PMID: 25271615.

16.El-Kafrawy S A, Corman VM, Tolah AM, Al Masaudi SB, Hassan AM, Müller M A, Bleicker T, Harakeh SM, Alzahrani AA, Alsaaidi GA, Alagili AN, Hashem AM, Zumla A, Drosten C, Azhar EI. (2019). Enzootic patterns of Middle East respiratory syndrome coronavirus in imported African and local Arabian dromedary camels: a prospective genomic study. *The Lancet Planetary Health*, 3 (12), e521-e528. 10.1016/S2542-5196(19)30243-8.

17.**Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CD, Fukuoka J, Taubenberger JK, Travis WD.(2003).** Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol. 2003 Aug;34(8):743-8. doi: 10.1016/s0046-8177(03)00367-8. Erratum in: Hum Pathol. 2004 Jan;35(1):138. PMID: 14506633; PMCID: PMC7119137.

18.http://www.who.int/emergencies/mers-cov/en/

19. Fehr AR, Perlman S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 1282:1–23. doi:10.1007/978-1-4939-2438-7_1

20. Fan C, Li K, Ding Y, Lu W.L, Wang J. (2020). ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection, medRxiv.

21.Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL.(2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003 Oct 10;302(5643):276-8. doi: 10.1126/science.1087139. Epub 2003 Sep 4. PMID: 12958366.

22.Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS. (2005). Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005 Aug 1;202(3):415-24. doi: 10.1084/jem.20050828. Epub 2005 Jul 25. PMID: 16043521; PMCID: PMC2213088.

23.**Henwood F Anthony.(2020).** Coronavirus disinfection in histopathology. Journal of Histotechnology https://doi.org/10.1080/01478885.2020.1734718

24.**Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, Alsheikh S, Alsanouri T. (2013).** Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. *East Mediterr Health J*, 19: S12–8.

Attribution-Noncommercial
CC BY-NC
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-
commercial, they don't have to license their derivative works on the same terms.

25.Hu B, Zeng LP, Yang X L, Ge X Y, Zhang W, Li B, Xie JZ, Shen XR, Zhang Y Z, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang L F, Cui J, & Shi ZL. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. *PLoS pathogens*, *13*(11), e1006698. https://doi.org/10.1371/journal.ppat.1006698

26.Hanley B, Lucas BS, Youd E, Swift B, Osborn M. (2020). Autopsy in suspected COVID-19 cases. *J Clin Pathol*, **73**, 239–242. doi:10.1136/jclinpath-2020-206522

27. **Health and Safety Executive . (2018).** Safe working and the prevention of infection in the mortuary and post-mortem room. secondary safe working and the prevention of infection in the mortuary and post-mortem room, 2018. Available: https://www.rcpath.org/uploads/assets/d5e28baf-5789-4b0f-acecfe370eee6223/fe8fa85a-f004- 4a0c-81ee4b2b9cd12cbf/Briefing-on-COVID-19-autopsy-Feb-2020.pdf

28.Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 30;: PMID: 31986264; PMCID: PMC7159299. 29.https://www.worldometers.info/coronavirus/

30.https://www.who.int/emergencies/mers-cov/en/

31.**Kim KH, Tandi TE, Choi JW, Moon JM, Kim MS. (2017).** Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J Hosp Infect. 2017 Feb;95(2):207-213. doi: 10.1016/j.jhin.2016.10.008. Epub 2016 Oct 14. PMID: 28153558; PMCID: PMC7114867.

32.**Kupferschmidt K. (2013).** Emerging diseases. researchers scramble to un- derstand camel connection to MERS. Science, 341(6147),702.

33.Leung C, Kwan Y, Ko P, Chiu S, Loung P, Fong N, Lee L, Hui Y, Law H, Wong W, Chan K, Peiris M, Lim W, Lau Y, and Chiu M. (2004). Severe acute respiratory syndrome among children. *Pediatrics*. 113(6):e535–e543. https://doi.org/10.1542/peds.113.6.e535.

34.Li K, Wohlford-Lenane CL, Channappanavar R, Park JE, Earnest JT, Bair TB, Bates AM, Brogden KA, Flaherty HA, Gallagher T, Meyerholz DK, Perlman S, McCray PB Jr. (2017). Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3119-E3128. doi: 10.1073/pnas.1619109114. Epub 2017 Mar 27. PMID: 28348219; PMCID: PMC5393213.

CC BY-NC	
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-	
commercial, they don't have to license their derivative works on the same terms.	

DOI: 10.22428/ MRVSA

Mirror of Research in Veterinary Sciences and Animals

35. Lai MMC, Perlman S, Anderson LJ. (2007). Coronaviridae. in: Knipe D.M. Howley P.M. Fields Virology. Vol 1. Philadelphia; 5th edn. Lippincott Williams & Wilkins. 1305-1335

36.Lai MM, & Cavanagh D. (1997). The molecular biology of coronaviruses. *Advances in virus research*, 48, 1–100. <u>https://doi.org/10.1016/S0065-3527(08)60286-9</u>

37.Langereis MA, van Vliet AL, Boot W, de Groot RJ.(2010). Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. J Virol. 2010 Sep;84(17):8970-4. doi: 10.1128/JVI.00566-10. Epub 2010 Jun 10. PMID: 20538854; PMCID: PMC2919023.

38.Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005 Oct 28;310(5748):676-9. doi: 10.1126/science.1118391. Epub 2005 Sep 29. PMID: 16195424.

39. Li Z, Wu M, Guo ., Yao J, Liao X, Song S, Han M, Li J, Duan G, Zhou Y, Wu X, Zhou Z, Wang T, Hu M, Chen X, Fu Y, Lei C, Dong H, Zhou Y, Jia H, Chen X, Yan J. (2020). Caution on Kidney Dysfunctions of 2019-nCoV Patients, med Rxiv.

40.**Masters PS, Perlman S. (2013).** Coronaviridae. In: Knipe DM, Howley PM, eds. Fields virology. 6th ed. Lippincott Williams & Wilkins:825-58.

41.Lu H, Stratton CW, Tang YW. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol. 2020 Apr;92(4):401-402. doi: 10.1002/jmv.25678. Epub 2020 Feb 12. PMID: 31950516; PMCID: PMC7166628.

42. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, Alhakeem R, Durosinloun A, Al Asmari M, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah AA, Lipkin WI. (2013). Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013 Nov;19(11):1819-23. doi: 10.3201/eid1911.131172. PMID: 24206838; PMCID: PMC3837665.

43. Müller MA, Meyer B, Corman VM, Al-Masri M, Turkestani A, Ritz D, Sieberg A, Aldabbagh S, Bosch BJ, Lattwein E, Alhakeem RF, Assiri AM, Albarrak AM, Al-Shangiti AM, Al-Tawfiq JA, Wikramaratna P, Alrabeeah AA, Drosten C, Memish ZA. (2015). Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study. Lancet Infect Dis. 2015 Jun;15(6):629. doi: 10.1016/S1473-3099(15)00029-8. Epub 2015 May 17. Erratum for: Lancet Infect Dis. 2015 May;15(5):559-64. PMID: 26008827.

44.Ng D L, Al Hosani F, Keating M K, Gerber S I, Jones T L, Metcalfe M G, Tong S, Tao Y, Alami N N., Haynes L M., Mutei M A, Abdel-Wareth L, Uyeki T M., Swerdlow D L, Barakat M, and Zaki S R. (2016). Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East

20
Attribution-Noncommercial
CC BY-NC
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-
commercial, they don't have to license their derivative works on the same terms.

Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014. Am J Pathol. 186 (3):652–658. <u>https://doi.org/10.1016/j.ajpath.2015.10.024</u>.

45.Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, Yan KW, Chan KH, Tsang NC, Guan Y, Yuen KY, Peiris JS.(2003). Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003 May 24;361(9371):1773-8. doi: 10.1016/s0140-6736(03)13413-7. PMID: 12781536; PMCID: PMC7112492.

46.**Oh MD, Park WB, Park SW, Choe PG, Bang JH, Song KH, Kim ES, Kim HB, Kim NJ. (2018).** Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J Intern Med. 2018 Mar;33(2):233-246. doi: 10.3904/kjim.2018.031. Epub 2018 Feb 27. PMID: 29506344; PMCID: PMC5840604.

47.**Oboho IK, Tomczyk SM, Al-Asmari AM, Banjar AA, Al-Mugti H, Aloraini MS, Alkhaldi KZ, Almohammadi EL, Alraddadi BM, Gerber SI, Swerdlow DL, Watson JT, Madani TA. (2015).** 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities. N Engl J Med. 2015 Feb 26;372(9):846-54. doi: 10.1056/NEJMoa1408636. PMID: 25714162; PMCID: PMC5710730.

48.**Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. (2003).** The severe acute respiratory syndrome. N Engl J Med. 2003 Dec 18;349(25):2431-41. doi: 10.1056/NEJMra032498. PMID: 14681510.

49. **Perlman S, & Netland J. (2009).** Coronaviruses post-SARS: update on replication and pathogenesis. *Nature reviews. Microbiology*, 7(6), 439–450. <u>https://doi.org/10.1038/nrmicro2147</u>

50.**Perlman, S. (2020).** Another Decade, Another Coronavirus. *The New England journal of medicine*, *382*(8), 760–762. <u>https://doi.org/10.1056/NEJMe2001126</u>

51.**Shi He, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. (2020).** Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020; 20: 425–434 Published Online February 24, 2020 https://doi.org/10.1016/S1473-3099(20)30086-4

52. **Tian S, Hu W, Niu L, Liu H, Xu H, Xiao Shu-Yuan. (2020).** Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. Journal of Thoracic Oncology <u>https://doi.org/10.1016/j.jtho.2020.02.010</u>.

53.**Tse G M-K, To K-F, Chan P K-S, Lo A W I, Ng K -C, Wu A, Lee N, Wong H-C, Mak S-M, Chan K-F, Hui D S C, Sung J J-Y, Ng H-K. (2004).** Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS) . J Clin Pathol 57:260–265. doi: 10.1136/jcp.2003.013276

54. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z.(2020). Clinical Characteristics of 138 Hospitalized

21
Attribution-Noncommercial
CC BY-NC
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-
commercial, they don't have to license their derivative works on the same terms.

Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585. PMID: 32031570; PMCID: PMC7042881.

55. Wang, W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. (2020 B). A Detection of SARS-CoV-2 in Different Types of Clinical Specimens. *JAMA*, doi: 10.1001/jama.2020.3786

56. Walker DH. (2016). Value of autopsy emphasized in the case report of a single patient with Middle East respiratory syndrome. Am J Pathol.;186(3):507–510. https://doi. org/10.1016/j.ajpath.2015.11.001.

57. Weiss SR, & Leibowitz JL. (2011). Coronavirus pathogenesis. Advances in virus research, 81, 85–164. https://doi.org/10.1016/B978-0-12-385885-6.00009-2

58. Weiss SR, & Navas-Martin S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. *Microbiology and molecular biology reviews* : *MMBR*, 69(4), 635–664. <u>https://doi.org/10.1128/MMBR.69.4.635-664.2005</u>

59. **WHO.** Director General's remarks at the media briefing on 2019-nCoV on 11 February 2020. secondary director General's remarks at the media briefing on 2019-nCoV on 11 February 2020, 2020. Available: https://www.who.int/ dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019- ncov-on-11-february-2020

60.WHO/cds/csr/gar/2003.11

61. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y.(2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 May;8(5):475-481. doi: 10.1016/S2213-2600(20)30079-5. Epub 2020 Feb 24. Erratum in: Lancet Respir Med. 2020 Apr;8(4):e26. PMID: 32105632; PMCID: PMC7102538.

62. Yeung ML, Yao Y, Jia L, Chan JF, Chan KH, Cheung KF, Chen H, Poon VK, Tsang AK, To KK, Yiu MK, Teng JL, Chu H, Zhou J, Zhang Q, Deng W, Lau SK, Lau JY, Woo PC, Chan TM, Yung S, Zheng BJ, Jin DY, Mathieson PW, Qin C, Yuen KY.(2016). MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat Microbiol. 2016 Feb 22;1(3):16004. doi: 10.1038/nmicrobiol.2016.4. PMID: 27572168; PMCID: PMC7097571.

63. Yao Y, Bao L, Deng W, Xu L, Li F, Lv Q, Yu P, Chen T, Xu Y, Zhu H, Yuan J, Gu S, Wei Q, Chen H, Yuen KY, Qin C. (2014). An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J Infect Dis. 2014 Jan 15;209(2):236-42. doi: 10.1093/infdis/jit590. Epub 2013 Nov 11. PMID: 24218506; PMCID: PMC7107340.

Attribution-Noncommercial
CC BY-NC
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-
commercial, they don't have to license their derivative works on the same terms.

DOI: 10.22428/ MRVSA

Mirror of Research in Veterinary Sciences and Animals

64.**Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM.** (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med.367(19):1814–1820. <u>https://doi.org/10.1056/NEJMoa1211721</u>.

65. Zhou J, Li C, Zhao G, Chu H, Wang D, Yan HH, Poon VK, Wen L, Wong BH, Zhao X, Chiu MC, Yang D, Wang Y, Au-Yeung RKH, Chan IH, Sun S, Chan JF, To KK, Memish ZA, Corman VM, Drosten C, Hung IF, Zhou Y, Leung SY, Yuen KY. (2017). Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv. 2017 Nov 15;3(11):eaao4966. doi: 10.1126/sciadv.aao4966. PMID: 29152574; PMCID: PMC5687858.

66.Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G F, Tan W, & China Novel Coronavirus Investigating and Research Team (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. *The New England journal of medicine*, 382(8), 727–733. <u>https://doi.org/10.1056/NEJMoa2001017</u>

67.**Zumla A, Hui DS, & Perlman S. (2015).** Middle East respiratory syndrome. *Lancet (London, England)*, *386*(9997), 995–1007. <u>https://doi.org/10.1016/S0140-6736(15)60454-8</u>

68. Zhe Xu, Lei Shi, Yijin Wang, Jiyuan Zhang, Lei Huang, Chao Zhang, Shuhong Liu, Peng Zhao, Hongxia Liu, Li Zhu, Yanhong Tai, Changqing Bai, Tingting Gao, Jinwen Song, Peng Xia, Jinghui Dong, Jingmin Zhao, Fu-Sheng Wang (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The lancet respiratory medicine. Lancet Respir Med. 2020 Apr;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18.

Attribution-Noncommercial CC BY-NC This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be noncommercial, they don't have to license their derivative works on the same terms.

Prevalence of ticks infestation in dromedary camels (Camelus dromedarius) in area surrounded Sawa lake/ Iraq

Abdul Al-Rahman Heidar Abdul Al-Hussein¹; Alaa Hussein Shanan¹; Karima A. Al-Salihi²

¹ College of Veterinary Medicine / Al-Muthanna University/ Al-Muthanna Province/ Iraq ² Internal Medicine & zoonotic diseases Department / College of Veterinary Medicine / Al-Muthanna University/ Al-Muthanna Province/ Iraq, ORCID: https://orcid.org/0000-0002-5698-2678

ARTICLE INFO

Received: 25.09.2020 **Revised:** 30.10. 2020 Accepted: 20.11.2020 **Publish online:** 12.02.2021

*Corresponding author: Karima Al Salihi: Email address: kama-akool18@mu.edu.iq.

Abstract

This study was done to explore the ticks infestation and to identify its species in one-humped camels (Camelus dromedaries) surrounded Sawa lake /Al Muthanna province / Iraq. In response to the camel's owners request, a total of 255 camels consists of 98 (15 males & 83 female) and 157 (14 male & 143 female) camels from first and herd respectively, second were undergone to clinical and parasitological examinations during 2nd to 28th February 2020, near Sawa lake. Observable ticks were collected from different body regions of each animals. Ticks were transferred to the laboratory for further investigations. During the study period, a total, 1895 ticks were collected. The overall ticks infestation percentage was 98.43 % (251) comprise 98.97 % (97) and 98.08% (154) in the first and second herds. According to gender, the highest infestation percentage was 99.11% (224 out of 226) and 93.10 % (27 out of 29) for female and male in herd 1 and 2 respectively. According to lesion severity, out of 255 examined camels, there were 197(77.25%), 38 (14.90%) and 19 (7.45%) revealed mild, moderate and severe infestation respectively. The affected camels were revealed severe lesions that distributed over all the body including; udder, testes, anus inguinal, face, area, axillary, chest, and legs. Large areas of the skin of the affected animals were revealed complete hair loss accompanied with thickening, white gray heavy crusts. Sever itching and annoyance were very clear on the animals, moreover some severely affected animals were suffering from dehydration. Boophilus spp and Hylomma spp. were as the most abundant species of ticks in this study. Based on the results of the present study, it is concluded that camels found to harbor both Hyalomma spp. and *Boophilus spp.* The results of this study also approved heavy ticks infestation between the herds of the camels. Ticks especially Hyalomma spp are the most notorious ticks for transmission of human and animal diseases. Therefore, proper ticks treatment using acaricides and insecticides of the affected camels is the most effective protocol not only for controlling ticks infestation in camels but also for prevention from re-infestation from the animal environment.

To Cite this article: Abdul Al-Rahman Heidar Abdul Al-Hussein ; Alaa Hussein Shanan ; Karima A. Al-Salihi. (2020). Prevalence of ticks infestation in dromedary camels (Camelus dromedarius) in area surrounded Sawa lake/ Iraq (2020). MRVSA. 9 (3): 24-36. Doi: http://dx.doi.org/10.22428/mrvsa-2020-0093-02

Keywords: Al Muthanna province, Camelus dromedaries, Sawa lake, Ticks

Introduction

A Sawa lake is located Within Al Muthanna province, near Samawah desert. It is situated at the eastern edge of southern desert close to Euphartes river that cross Samawah city into two parts the southrena and the eastern parts. This lake has no inlet or outlet and is fed by groundwater that originates from the higher western desert areas. The only plant cover is scattered low desert shrubs. Most of the delineated area consists of desert and semi-desert with scattered desert shrubs, while the lake itself forms a small portion of the site. Moreover, ten terrestrial plant species are identified and the area was rated as four on the ecological scale (very distributed), due to hunting, fishing and livestock grazing. Additionally, the geology is sedimentary, the soil is sandy-clay and the non-vegetated percentage 85% in the lake and 30% in areas around the lake. All these features have made Sawa lake and its surrounded areas as a suitable environment for varieties of fauna and birds. Additionally, it is harbor considerable wildlife diversity and use by Bedouins and camel's owners to raising and breeding camels.

Camels are considered as pseudo-rumen chorionic mammals. Camels are classified as mammals with double fingers and lined feet and it belongs to the family of Camelidae, that included Dromedary, Bactrian, Lama, Alpaca, Vicuna and Guanaco (Franklin, 2011). The old world camels are placed fundamentally into two species, the Camelus bacterianus (Bactrian) with two humps and Camelus dromedarious (Arabian) with one hump (Wilson, 1998). The dromedary favor desert environments and are used in the transportation of human and also as a source of hair, hides, meat and milk (Al-Salihi, 2016). The Camelids are considered as one of the domesticated animals in Mesopotamia and this fact has been confirmed in the cylinder seals that came from Mesopotamia Middle Bronze Age and showed riders seated upon camels (Al-Salihi, 2016). The total number of camels in the world is about 25.89 million heads, 89% of which are Dromedary camels, and the remaining (11%) is a Bactrian camel (in the cold deserts of Asia). More than 80% of the world's camels are found in Africa. According to Iraqi government 1978 survey, there was 70,000 camels. But this number declined dramatically because of the economic sanctions imposed after the 1991 Gulf war (FAO, 2005). Nowadays, Iraq owned a total of 58,000 camels (Al-Salihi, 2012). All these camels are one-humped and commonly found in certain parts. The greatest proportion of this population is present in the middle and south and west parts of country. Worldwide, camel is considered as one of the important animals, although they are living in the harsh desert environmental conditions (Knoess, 1984; Abbas and Tilley, 1990; Schwartz, 1992).

Since long time ago, camels (*Camelus dromedarius*) are reared in Al Muthanna. It plays important role in the life of people (as Arabian), and are used as meat, dairy and transportation animals ,beside using as deposited wealth for the forthcoming severe times (Al-Salihi *et al.*, 2018).

Similar other animals, camels are highly susceptible to diseases and parasites (Al-Salihi *et al.*, 2018; Al- Zubaidy, 1995). The external parasites of camels are including ticks, mites, and other parasitic arthropods e.g. myiasis flies (Al- Zubaidy, 1995; Soulsby, 1986).

Ticks are a main limit on the world's livestock production (Zeleke and Bekele, 2004). It employs a major interference of the enhancement of animal production in the tropical and subtropical regions of the world (Dalgliesh *et al.*, 1990). Ticks are obligate blood-

feeding parasites of terrestrial vertebrates. They have worldwide distribution and cause tick worry, anemia, skin injury and sometimes tick paralysis during feeding on their host (Wall and Shearer, 2001). In addition, ticks can act as vectors for some pathogenic agents including bacteria, virus and protozoa. This role of ticks is very important in public health and veterinary medicine (Mullen and Durden 2009). Transmission of various pathogenic microorganisms to domestic animals by ticks imposes considerable economic losses to livestock industry (Jongejan and Uilenberg 2004).

Camels are very vulnerable to ectoparasite especially ticks due to their permanent presence in the deserts and lack of adequate care in Iraq. Some studies have been done on camel tick infestations in Iraq and other parts of the world (Al-Salihi *et al.*, 2018; Elghali and Hassan 2009; Salimabadi *et al.*, 2010; Nazifi *et al.*, 2011; Fard *et al.*, 2012; Taddese *et al.*, 2013).

There are two families of ticks, the hard and soft ticks or the Ixodidae and Argasidae families respectively (Soulsby, 1986; Urguhart et al., 1987). Family Ixodidae are the most common ticks harbor by camels, moreover, it is also approved as the most common external parasites that affecting all livestock in Iraq and other countries in the Middle East (Al-Khalifa et. al., 2007; Al-Zubaidy; 1995; Banaja et al., 1980; Hoogstraal et al., 1981). The ticks are used the mechanically or biologically methods to transmit the pathogens to the host, moreover, some microbial agents need to goes via different kinds of growth and evolution within the vector. The microorganisms can be spread either transstadially (Stage to stage, usually happen in three- host ticks) or transovarially (from female to offspring via eggs and mostly in one host ticks). Significant mortality and morbidity rates have been reported in camels and other farm animals due to heavy ticks infestation (Zeleke and Bekele, 2004). Protozoa such as Anaplasma spp. Babesia spp. and *Theileria spp.*, are important blood parasite that can be spread by ticks. Furthermore, Theileria camelus and Anaplasma marginale were reported in camels (Soulsby, 1986). Various ticks are infested camels . The legs, head and the underbelly are the common body parts that invaded with ticks. Ticks infestation result in swellings and small wounds in the skin from the bites.

Poisons from some ticks affect the nervous system and muscles and hinder the animal movement (paralysis), which can lead to death. The camel suddenly shows signs of paralysis and its body temperature will drop (Mukasa-Mugerwa, 1981).

According to a study performed by Hussein and Al-Fatlawi (2009), it was found that hard ticks of *Boophilus* Spp and *Hyalomma* Spp. were the most abundant species infesting Iraqi dromedaries (83%) in Al-Qadisiya province. However, the ticks infestation ratio was 24.7% and 75.3% of male and female respectively. In Saudi Arabia, 13 species and subspecies were reported to infest camels and among other livestock (Al-Khalifa *et al.*, 2007; Banaja *et al.*, 1980; Hoogstraal *et al.*, 1981). Indeed, these ticks are well modified to harsh desert conditions (Morel, 1980). Another studies were also approved the incidence of ticks of *H. dromedarii* and other *H. species* as the most common species infesting camels in Egypt.

Review of literature revealed scarce publication concerning ticks infestation in camels population in Al Muthhanna governorate. Consequently, this a preliminary study intends to explore the ticks infestation in one-humped camels (*Camelus dromedaries*) surrounded Sawa lake / Al Muthanna province / Iraq and to identify the species of the infested ticks.

Materials and Methods

This study was done on two camel herds surrounded Sawa lake /Al Muthanna governorate 280 kilometers of southeast of Baghdad (Figure. 1 & 2) (http://www.natureiraq.org/uploads/9/2/7/0/9270858/sawa_lake_mt1_22_mar-anna.pdf). Sawa Lake and the surrounding desert areas are located about 22 km southwest of Samawa city, to the west of Mamlaha-Shinnafiya desert motorway, and to the south of the western branch of Euphrates. Sawa Lake is located at the eastern edge of the southern desert close to the Euphrates River. This lake has no inlet or outlet and is fed by groundwater that originates from the higher western desert areas. The only plant cover is scattered low desert shrubs. Most of the delineated area consists of desert and semi-desert with scattered desert shrubs, while the lake itself forms a small portion of the site. A high populations of the *Camelus dromedarius* are living there. The area is covered with desert plants of diverse concentrations.

Figure. 1: Shows the area near Sawa lake /Al Muthanna governora

Figure. 2: Shows the view north at the western edge of Sawa Lake

The areas were surveyed and visited, in response to the camel's owners request. A total of 255 one-humped camels (*Camelus dromedaries*), consists of 98 (15 males & 83 female) and 157 (14 male & 143 female) camels from first and second herd respectively, were undergone to clinical and parasitological examinations during 2^{nd} to 28^{th} February 2020 (Figure.3 & 4).

Figure. 3& 4: Shows the herds camel included in this study

A- Ticks collection

The ticks were collected during 2 visits to the camel herds. The observable ticks were collected from different body regions of each animals. Collected ticks (Figure.5 &6) were put in plastic containers with Isopropyl Alcohol for disinfection and fixing the samples. Ticks collected from each animal was put alone. Later on, ticks were transferred to the clinical pathology laboratory, College of veterinary medicine/Al Muthanna university for further investigations. During the study period, a total, 1895 ticks were collected. After that the ticks were counted and then prepared for identification. Each tick was processed and identified microscopically according to the keys of hard ticks mentioned previously (Hoogstraal, 1956; Hoogstraal *et al.*, 1981; Soulsby, 1986).

Figure. 5: Shows the direct effects of heavy tick infestation in camel.

Figure. 6: Shows the hand collecting of ticks from heavy infested camel

B. Ticks microscopic slides preparations

The ticks specimens are cleaned from the host tissue that attached in their mouth. Later on, it placed in 10% KOH for softening according to method described previously by Al Salihi *et al.*, (2018). All ticks samples were examined using light microscope. All information concerning number and genus of ticks was recorded during examination of

each sample. The number of male, female and the immature stages of ticks were also recorded.

Results

During the study period, a total, 1895 ticks were collected (Figure 7. A&B). The overall ticks infestation percentage was 98.43 % (251) comprise 98.97 % (97) and 98.08% (154) in the first and second herds (Table.1). According to gender, the highest infestation percentage was 99.11% (224 out of 226) and 93.10 % (27 out of 29) for female and male in herd 1 and 2 respectively (Table.2). According to lesion severity, out of 255 examined camels, there were 197(77.25%), 38 (14.90%) and 19 (7.45%) revealed mild, moderate and severe infestation respectively (Table.3).

Figure. 7. A& B: Shows samples of the collected ticks from the camels

The affected camels were revealed severe lesions that distributed over all the body including; udder(Figure. 8 A&B), testes, anus, inguinal, face, area, axillary, chest, and legs. Large areas of the skin of the affected animals were revealed complete hair loss accompanied with thickening, white gray heavy crusts (Figure. 9, 10). Sever itching and annoyance were very clear on the animals, moreover some severely affected animals were suffering from dehydration. *Boophilus spp and Hylomma spp*. were the most abundant species of ticks.

Table. 1: Shows the percentages of ticks infestation in camels here	1
---	---

No of camels	Herd 1	Herd 2	Total
Numbers of animals included	98	157	255
in this study			
Number of animals infested by	97	154	251
ticks			
Percentages	98.97 %	98.08%	98.43 %

Table. 2: Shows the percentages of ticks infestation according to the gender

Gender	Herd 1	Herd 2	Total	Numbe	Percentages %
			number	r of	
			of camels	Affecte	
				d	
				camels	
Males	15	14	29	27	93. 10 %
Females	83	143	226	224	99.11%
Total	98	157	255	251	98.43 %

Table.3: Shows the classification of the severity of tick infestation

Criteria	No of	Percentages %
	camels	
Low infestation (15-60 ticks per camel)	197	77.25
Medium infestation (61-200 ticks per camel)	38	14.90
High (above 201 ticks per camel)	19	7.45
Total number of infested animals	255	99.6

Figure. 8. A&B: Shows ticks attached to the She-camels mammary glands

Figure. 9& 10: Shows the loss of the hair , thickening, white gray heavy crusts areas after remove of the ticks

Discussion

One of the distressing factors for the animals are the external parasites. Ticks are one the chief external parasites that distressing all animals including camels. They effect on the health of the animals and able to spreading different diseases causing agents. Moreover, ticks are sucked the blood and cause anemia due to loss of the blood. They are also damaged the hide and udder of the animals (Teka *et al.*, 2017; Al Salihi *et al.*, 2017; Walker *et al.*, 2003; Higgins, 1983). The camel productivity are reduced due to ticks infestation, moreover heavy ticks infestation are causing a significant economic loss (Zeleke and Bekele, 2004).

The results of the present study revealed that the *Camelus dromedarius* surrounded Sawa lake /Al Muthanna governorate were infested considerably by different level of numerous species of ticks.

The results of the current study shown high percentages of infestation between examined camels with an overall infestation percentage 98.43 % (251 out of 255) comprise 98.97 % (97) and 98.08% (154) in the first and second herds. This result is compatible with previous reports (Al Salihi *et al.*, 2018; Mohammad, 2015; Hussein and Al-Fatlawi, 2009), meanwhile, it is not compatible with Shubber *et al.*, (2014), who found lower infestation percentage (65.77 %) in camels.

There are several reasons for the high ticks infestation percentages that occurred in this study. These reasons are included the lifestyle practiced by camel's owners, the poor hygienic condition and absence of prevention program to control the external parasites infestation including ticks, all these factors contribute in extra burden of the ticks infestation. Moreover, the breeding of camels with another species of the animals such as the sheep and goats, rearing of large number of camels, the geographical ecosystem of the study area comprising boundaries of the cities, villages, semi-desert and desert enabling the camels to harbor high number of ectoparasites especially various ticks species.

Likewise, the high ticks infestation percentages described in the current study are compatible with prior percentages conveyed elsewhere in the world as, 85.5%, 78.6% and 83% in Iran (Champour *et al.*, 2013), Eastern Ethiopia (Teka *et al.*, 2017) and Pakistan (Javaid *et al.*, 2013) respectively. However, this result is incompatible with Abdurahman, (2006), who reported 49.1% tick infestation on the camels because the

examination of the udder region only. Furthermore, it is also varied with Hegazy *et al*,. (2004), who found ticks infestation on the eyelids of 12 out of 488 examined camels in Egypt, and this low infection perhaps due to the examination of eyelids only.

The result of the present study also revealed that the highest infestation rate 99.11% (224 out of 226) was in female, while, the male percentage was 93.10% (27 out of 29). These results agree with previous researcher who revealed heavy infestation of ticks in female (Yakhchali, 2006; Lees and Miline, 1951). The ferocity of camel's male lead to reduce the number and the proportion of male rearing in the herd to the number of females, and this issue might lead to the high reported infestation percentage in female than male.

Hylomma dromedarii and *Boophilus spp* the two genus of hard ticks were reported in the present study and this result is compatible with Hussein and AL-Fatlawi, (2009) who also reported the same two species in Al-Qadisiya province. These results are also recognized by the prior studies elsewhere in the world (Javaid *et al.*, 2013; Kady, 1998), who revealed that *Hylomma dromedarii* was the common species infested camels. Some species of ticks had been isolated including *Hyalomma spp. Amblyomma and Ripicephalus* from *Camelus dromedarius* in Africa and Asia (Mukasa-Mugerwa, 1981). Furthermore, Begum *et al.*, (1970) explored the *Hyalomma dromedaries*, while Javaid *et al.*, (2013) found *Hyalomma dromedarii*, *H.an.excavatum*, *H.impeltatum*, *H. an.anatolicum*, *H. marginatum* and *H. schulzei* in Pakistan. Besides, *Hyalomma, Boophilus and Ripicephalus spp*. were investigated in Iran (Yakhchali, 2006). However, some influences including difference of the climate, seasons and age of the animal play vital role in the presence of the species of the tick.

The results of this study displayed that the ticks were infested different sites of the body such as legs, chest, axillary, udder, testes, anus, inguinal, ear and face. However, the heavy infestation was found beneath the tail, udder, chest and inguinal area. These results are in agreement with the results reported prior in Iraq (Hussein and Al- Fatlawi, 2009) and Iran (Yakhchali, 2006). The circulation of the ticks overall parts of the body lead to develop skin lesion and other disease such as mastitis, if severe infestation occurred on the udder (Al Salihi *et al.*, 2017).

The mistreatment of ticks infestation is contributing in the continuity of the ticks irritation and their life cycle that lead to heavy tick burden infestation for the animals.

The results of the present study also reported the number of infested ticks per each camel , and the tick infestation burden percentages were 197 (77.25%), 38 (14.90%) and 19 (7.45%) revealed mild, moderate and severe infestation respectively. These results are compatible with results reported previously by Van and Jongejan (2000) and Javaid *et al.*, (2013), who found a relatively heavy mean tick burden with very broad range in the numbers of ticks per camel (15-201 tick).

In conclusion, the current study confirmed the heavy ticks infestation among the two camel herds reared near Sawa lake /Al Muthanna governorate that included in this study. Moreover, various lesions were observed on different regions of the camel body, moreover the severity of the clinical signs were depending on the numbers of the infested ticks per individual. The researcher recommend another future studies that contribute to the understanding the epidemiology of ticks between herds of the camels and its impact in the transmission of serious diseases in camelids in Iraq. Scheduling of ticks eradication programs, facilities and drugs are needed to provide by the governmental veterinary authorities to control spreading ticks between the herds of the camel.

References

- 1. Abbas B, Tilley P, (1990). Pastoral management for protecting ecological balance in
 - Halaib District, Red Sea Province, Sudan. Nomadic Peoples. 29: 77-86.
- 2. Abdurahman OA (2006). Udder health and milk quality among camels in the Errer valley of eastern Ethiopia. Livest. Res. Rural Develop. 18(8): 32-38.
- Al-Salihi KA, Karim AJ, Jasim HJ, Kareem FA (2018). Epidemiology of ticks fauna of camels in samawah desert. Adv. Anim. Vet. Sci. 6(8): 311-316. doI | http://dx.doi.org/10.17582/journal.aavs/2018/6.8.311.316
- 4. Al-Khalifa MS, Khalil GM, Diab FM (2007). A Tow Years Study of Ticks infesting Goats and Sheep in Abha, Saudi Arabia. Saudi J. Biol. Sci. 14: 83-91.
- 5. Al-Salihi KA. (2018). Dermatology of Camelids. LAP LAMBERT Academic Publishing (August 8, 2018). ISBN-10: 3659333921
- Al-Salihi KA, Abdullah S, Amjad L, Leitha H (2017). Epidemiological study of clinical and subclinical mastitis in she- camel in Samawah desert / Al Muthanna governorate. MRVSA. 6(2): 11-24. https://doi.org/10.22428/mrvsa. 2307-8073.2016.00622.x.
- Al-Salihi Karima (2016). Observations on dromedary (Arabian camel) and its diseases. MRVSA 5 (Special issue) 1st Iraqi colloquium on camel diseases and management. 1-11.
- 8. Al-Salihi Karima Akool (2012). An insight into veterinary education in Iraq. Veterinary Record | September 29: 316-317.
- 9. Al- Zubaidy AJ (1995). The Arabian Camel, Rearing and Pathology of camels (Arabic textbook), All Prints Distributors and Publishers, Beirut, Lebanon.
- Banaja AA, Madbouly MH, Roshdy MA (1980). Ticks of Saudi Arabia 1. Ticks (Ixodidae) infesting imported and local breeds of domestic animals at Jeddah,4, Symp. Biol. Aspects, Saudi Arabia Biol. Soc. (Riyadh, March 1980),. 339-346.
- Begum F, Wisseman CL, Casals J (1970). Tick-borne viruses of west Pakistan III. Dera Ghazi Khan virus, Anew Agent isolated from Hyalomma dromedarii ticks in the D.G. khan district of west Pakistan. Ame. J. Epid. 92:195 – 196. https:// doi.org/10.1093/oxfordjournals.aje.a121198
- Champour M, Gholamreza M, Sadegh C, Gholamreza R, Ehsan M, Tahmineh J (2013). Frequency of hard-ticks and the influence of age and sex of camel on ticks infestation rates in one-humped camel (*Camelus dromedarius*) population in the northeast of Iran. Sci Parasitol 14(2):89-93.
- Dalgliesh RJ, Jorgensen WK, De Vos AJ (1990). Australian frozen vaccines for the control of babesiosis and anaplasmosis in cattle. A review. Trop. Anim. Health Prod. 22: 44-52. <u>https://doi.org/10.1007/BF02243499</u>
- 14. Elghali A, Hassan SM (2009) Ticks (Acari:Ixodidae) infesting camels (Camelus dromedarius) in Northern Sudan. Onderstepoort J Vet Res 76:177–185.
- 15. Fard SR, Fathi S, Asl EN, Nazhad HA, Kazeroni SS (2012) Hard ticks on onehumped camel (Camelus dromedarius) and their seasonal population dynamics in southeast, Iran. Trop Anim Health Prod 44:197–200

DOI: 10.22428/ MRVSA

Mirror of Research in Veterinary Sciences and Animals

- 16. Franklin W L. (2011). Family Camelidae (Camels). In: Wilson DE, Mittermeier RA, editors. Handbook of the mammals of the World. Vol. 2. Hoofed mammals. Barcelona (Spain): Lynx Ediciones. 206-246.
- 17. Hegazy AA, Fahmy LS, Aiad MA, Shamaa AA (2004). Eye Affection Among camels in Egypt. (2) pathological studies. J. Camel Sci. 1: 107-113.
- Higgins AJ (1983). Common ectoparasites of the camel and their control. Br. Vet. J. 141: 197-216. https://doi.org/10.1016/0007-1935(85)90153-8
- 19. Hoogstral H (1956). African Ixodidea. Ticks of the Sudan, (US Navy, Washington, DC).
- 20. Hoogstraal H, Wassef HY, Buttiker W (1981). Ticks (Acarina) of Saudi Arabia Fam. Argasdae, Ixodidae. Fauna Of Saudi Arabia. 3: 25-110.
- 21. Hussein MH, AL- Fatlawi MAA (2009). Study the epidemiology of ticks infected Camelus dromedaries in Al- Qadysia city. Al- Anbar J. Vet. Sci. 2(1): 13-19.
- 22. Javaid AG, Bachal B, Jam K, Muhammad S, Muhammad E, Shahar BJ,Muhammad S (2013). Tick Infestation in Camels in Thar Desert of Sindh-Pakistan. Int. J. Livest. Res. 3(1): 114-118. https://doi.org/10.5455/ijlr.20130109095924
- 23. Jongejan F, Uilenberg G (2004). The global importance of ticks. Parasitology 129:3–14.
- 24. Kady GA (1998). Protozoal parasites in tick species infesting camels in Sinai Peninsula. J. Egypt Soc. Parasitol. 28(3):765-76.
- Knoess K H. (1984). The milch dromedary. The Camelid; an all-purpose animal. In: Ross Cockrill, W. (Ed.), Proceedings of Khartoum workshop on Camels, December 1979. Uppsala, Sweden, pp. 176–195.
- 26. Lees AD, D Miline A (1951). The seasonal and diurnal activities of individual sheep ticks (Ixodes ricinus L.). Parasitology. 41: 189 208. https://doi.org/10.1017/S0031182000084031
- 27. Mohammad KM (2015). Distribution of ixodid ticks among domestic and wild animals in central Iraq Bull. Iraq nat. Hist. Mus. 13 (2): 23-30.
- 28. Morel PC. (1980). Study on Ethiopian ticks (Acarida, Ixodidae). Maison-Alfort, France, Gerdat-Iemvt. p. 332.
- 29. Mukasa-Mugerwa E (1981). The camel (*Camelus dromedarius*): a bibliographical review, International Livestock Center for Africa, Addisababa, Ethiopia.
- Mullen GR, Durden LA (2009). Medical and veterinary entomology. Academic Press, Burlington, MA
- Nazifi S, Tamadon A, Behzadi MA, Haddadi S, Raayat-Jahromi AR (2011) Onehumped camels (Camelus dromedaries) hard ticks infestation in Qeshm Island, Iran. Vet Res Forum 2:135–138.
- 32. Salimabadi Y, Telmadarraiy Z, Vatandoost H, Chinikar S, Oshaghi MA, Moradi M, Mirabzadeh Ardakan E, Hekmat S, Nasiri A (2010) Hard ticks on domestic ruminants and their seasonal population dynamics in Yazd Province, Iran. J Arthropod Borne Dis 4:66–71
- 33. Sawa Lake and the surrounding area (MT1) <u>http://www.natureiraq.org/uploads/9/2/7/0/9270858/sawa_lake_mt1_22_mar-anna.pdf</u>

- 34. Schwartz HZ and Dioli M. (1992). The one-humped camel in Eastern Africa. A pictorial guide to diseases, health care and management. Verlag Josef Margaf, Schonwald Druck, Berlin. 282.
- 35. Shubber HWK (2014). Taxonomic, anatomic, and molecular study of ixodid ticks parasitizing some mammals and birds in the middle and south of Iraq. Ph.D. thesis, College of Education, Al-Qadisiya University, Iraq.
- 36. Soulsby EJL (1986). Helminths, Arthropods and Protozoa of Domesticated Animals, 7th Edition, Bailliere Tindall.
- 37. Taddese A, Mustefa M, Fikru A (2013) Prevalence and identification of camel ticks in eastern Ethiopia. Online J Vet Res 17:64–72.
- Teka F, Mulisa M, Keder M, Yonas G, Tewodros A (2017). Major Ectoparasites Infesting *Camelus dromedarius* in Three Districts of Somali Regional State, Eastern Ethiopia. World Appl. Sci. J. 35 (1): 96-103.
- 39. Urquhart GM, Armour J, Duncan JL, Dunn AM, Jennings FW (1987). Vet. Parasitol. 1st Ed., Longman Scientific & Technical, UK.
- 40. Van S, Jongejan F (2000). Ticks (Acari: Ixodidae) infesting the Arabian camel (*Camelus dromedarius*) in the Sinai, Egypt with a note on the acaricidal efficacy of ivermectin. Exp. Appl. Acarol. 17(8):605-16.
- 41. Wall R, Shearer D (2001) Veterinary ectoparasites: biology, pathol- ogy and control. Blackwell Science, London.
- 42. Walker AR, A Bouattour, JJ Camicas, PA Estrada, IG Horak, AA Latif, RG Pegram, PM Preston (2003). Ticks of domestic animals in Africa: A Guide to Identification of Tick species. Biosci. Rep. Pp: 1-122.
- 43. Wilson R T. (1998). The Tropical Agriculturalist: Camels. Macmilan Education Ltd. London and Basingstoke.
- 44. Zeleke M, Bekele T (2004). Species of ticks on camels and their seasonal population dynamics in Eastern Ethiopia. Trop. Anim. Hlth. Prod. 36: 225-231. https://doi.org/10.1023/ B:TROP.0000016830.30194.2a
- 45. Yakhachali M (2006). Study on some ecological aspects and prevalence of different species ticks (Acarina:Ixodidae) on cattle, buffalo, and sheep in Oshnavieh suburb. Pajouhes and Sazan degi. 63: 30–35.

MIRROR OF RESEARCH IN VETERINARY SCIENCES AND ANIMALS (MRVSA)

MIRROR OF RESEARCH IN VETERINARY SCIENCES AND ANIMALS (MRVSA) IS CONSECRATED TO THE DISSEMINATION AND ADVANCEMENT OF SCIENTIFIC RESEARCH CONCERNING VETERINARY SCIENCES AND VETERINARY MEDICAL EDUCATION. IT ENCLOSES ALL THE SCIENTIFIC AND TECHNOLOGICAL ASPECTS OF VETERINARY SCIENCES IN GENERAL, ANATOMY, PHYSIOLOGY, BIOCHEMISTRY, PHARMACOLOGY, MICROBIOLOGY, PATHOLOGY, PUBLIC HEALTH, PARASITOLOGY, INFECTIOUS DISEASES, CLINICAL SCIENCES , ALTERNATIVE VETERINARY MEDICINE, LABORATORY DIAGNOSIS, LABORATORY ANIMALS AND OTHER BIOMEDICAL FIELDS.

□ TYPES OF CONTRIBUTIONS

- 1. ORIGINAL RESEARCH PAPERS (REGULAR PAPERS)
- 2. SHORT COMMUNICATIONS
- **3. REVIEW ARTICLES**

PUBLICATIONS WITHIN A SHORT PERIOD AFTER ACCEPTANCE ON-LINE PUBLICATION IN ADVANCE OF THE PRINTED JOURNAL. PAPERS ABSTRACT/INDEXED BY ALL THE MAJOR SCIENTIFIC INDEXING SERVICES.

□ 3 OFF PRINTS WILL BE SENT TO THE CORRESPONDING AUTHOR. ABSTRACT OF ALL MASTER, DOCTORAL THESIS WILL BE SUBMITTED FOR INCLUSION IN MRVSA FOR FREE. HOWEVER FULL THESIS WILL INCLUDE FEES).

□ THESIS, AN ONLINE DATABASE USED BY RESEARCHERS AROUND THE WORLD. THESIS CAN BE SEARCHED BY AUTHOR NAME, SUBJECT TERMS, AND ALL WORDS IN THE TITLE AND ABSTRACT.

ISSN Print-2520-324X E-2307-8073

Attribution-Noncommercial